Developing SSU rDNA metagenomic profiles of aquatic microbial communities

نویسندگان

  • Michael M. Marshall
  • Rebecca N. Amos
  • Vincent C. Henrich
چکیده

Five water samples from three sources, two municipal reservoirs in central North Carolina and Toolik Lake in Alaska, were processed to conduct a comparative survey of microbial small subunit rDNA sequences. Genomic DNA was extracted and amplified by PCR using universal SSU rDNA primers to generate 16S and 18S rDNA clone libraries and 50 clones from each library were sequenced and placed in operational taxonomic units (OTUs). Through this recovery and analysis of SSU rRNA genes, a metagenomic profile of the microbial community emerged for each environmental sample. Analyses of these profiles, including species diversity estimates and rank-abundance curves, revealed that approximately 64% of prokaryotic OTUs and 80% of eukaryotic OTUs were novel. Diversity estimates were consistent with predicted ecosystem characteristics: they were greater for the mesotrophic to eutrophic temperate lakes, than for the oligotrophic arctic lake. Sample comparisons showed that community similarity declined as geographic distance between sites increased. Realtime quantitative PCR results showed that OTUs which had been recovered from only one library were actually present in other samples, but at much lower frequencies, suggesting that many, if not most, microorganisms are cosmopolitan. Together, these results support the potential value of using the microbial community as an indicator of local environmental conditions. In other words, it may be realistic to monitor water quality using a single, comprehensive suite of microorganisms by analyzing patterns of relative abundance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Phylogenetic Diversity of Metagenomes

Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relati...

متن کامل

Eukaryotic diversity and phylogeny using small- and large-subunit ribosomal RNA genes from environmental samples.

The recent introduction of molecular techniques in eukaryotic microbial diversity studies, in particular those based in the amplification and sequencing of small-subunit ribosomal DNA (SSU rDNA), has revealed the existence of an unexpected variety of new phylotypes. The taxonomic ascription of the organisms bearing those sequences is generally deduced from phylogenetic analysis. Unfortunately, ...

متن کامل

Serial analysis of ribosomal sequence tags (SARST): a high-throughput method for profiling complex microbial communities.

Two decades of culture-independent studies have confirmed that microbial communities represent the most complex and concentrated pool of phylogenetic diversity on the planet. There remains a need for innovative molecular tools that can further our knowledge of microbial diversity and its functional implications. We present the method and application of serial analysis of ribosomal sequence tags...

متن کامل

Rapid quantitative profiling of complex microbial populations

Diverse and complex microbial ecosystems are found in virtually every environment on earth, yet we know very little about their composition and ecology. Comprehensive identification and quantification of the constituents of these microbial communities--a 'census'--is an essential foundation for understanding their biology. To address this problem, we developed, tested and optimized a DNA oligon...

متن کامل

PhylOTU: A High-Throughput Procedure Quantifies Microbial Community Diversity and Resolves Novel Taxa from Metagenomic Data

Microbial diversity is typically characterized by clustering ribosomal RNA (SSU-rRNA) sequences into operational taxonomic units (OTUs). Targeted sequencing of environmental SSU-rRNA markers via PCR may fail to detect OTUs due to biases in priming and amplification. Analysis of shotgun sequenced environmental DNA, known as metagenomics, avoids amplification bias but generates fragmentary, non-o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011